

3382 Capital Circle NE Tallahassee, FL 32308

.

Genetic Testing Report Patsy

Generated on: 12/06/2024

Submitted By
Cavapoo 3:16

Subject Dog	
Name: Patsy	Lab Reference #: 858424
Breed: Cavapoo	Sample Date: 12/04/2024
Phenotype: Apricot	Research Date: 12/04/2024
Sex: Female	Microchip:
Birth://	

Disorder Resu	Disorder Results(6 of 16)			
CKCSID	n/n	Clear: Dog is negative for mutation associated with Curly Coat Dry Eye.		
DM	n/DM	Heterozygous: Dog carries one copy of the mutation associated with Degenerative Myelopathy. In some breeds, there is a low risk of the dog developing the disorder		
EFS	n/n	Clear: Dog is negative for mutation associated with Episodic Falling.		
NEwS	n/n	Clear: Dog is negative for mutation associated with NEwS.		
PRA-prcd	n/n	Negative: Dog is negative for the mutation associated with prcd-PRA.		
vWD1	n/n	Clear: Dog is negative for the mutation associated with von Willebrand's Disease Type I.		

3382 Capital Circle NE

Tallahassee, FL 32308

2/2

Genetic Testing Report Patsy

Color Results(5 of 16)			
A-Locus	aw/at	Dog is wild-sable and carries the gene responsible for tan points.	
B-Locus	B/B	Dog does not carry the mutation for most forms of chocolate coloration.	
D-Locus	D/D	Negative: Dog is negative for the mutation associated with a diluted coat color.	
E-Locus	e/e	Dog has two copies of cream/yellow.	
K-Locus	n/KB	Both the KB and negative alleles detected; dog can be brindled or express only the base coat.	
Pattern Results(1	of 16)		
S-Locus	n/S	Heterozygous: Dog has one copy of S-Locus. Results vary according to breed, with some limited white spotting in some breeds.	
Trait Results(4 of 16)			
Curl 1&2	n/C ¹	The dog will have curly hair, and carries the gene responsible for non-curly hair. The dog can pass on a copy of either allele to any offspring.	
Furnishings	n/F	Furnished: Dog has one copy of the furnishings mutation and will be visibly furnished. The furnishings mutation may be passed to offspring.	
Hair Length (1-5)	I ¹ /I ¹	Two copies of the long-hair allele, dog will have longer than average hair per the breed standard.	
Shedding	n/SD	Dog carries one copy of the shedding allele. The dog will have an average propensity towards shedding.	

Web: https://animalgenetics.com

Certificate of Breed

Welcome to the

Embark family!

OWNER'S NAME: North America Doodles

OWNER SUPPLIED BREED: Cavapoo

DOG'S NAME: Cavapoos 3 :16 "s Patsy REGISTRATION ORGANIZATION: --

TEST DATE: September 6th, 2023

REGISTRATION NUMBER: --

This certifies the authenticity of **Cavapoos 3 :16 "s Patsy's** canine genetic background as determined following careful analysis of more than 200,000 genetic markers.

WOLFINESS 1.6% HIGH

MATERNAL **A224** HAPLOTYPE

CAVAPOO

50.0% Cavalier King Charles Spaniel

43.1% Poodle (Small)

6.9% Poodle (Standard)

Adam Boyko, Ph.D. CHIEF SCIENCE OFFICER

Ryan Boyko CHIEF EXECUTIVE OFFICER

42 Family Tree **Paternal Haplotype** Breed Dogs Like Mine Maternal Haplotype ← Back to my dogs(/) PARENTS 100 Poodle (Small) mix Cavalier King Charles Spaniel GRANDPARENTS Poodle (Small) / Cavalier King Charles Spaniel Poodle (Small) Cavalier King Poodle (Standard) mix Charles Spani GREAT GRANDPARENTS 13 63 100 Cavalier King Charles Spaniel Cavalier King Charles Spanie Poodle (Small) Poodle (Small) Poodle (Small) Poodle Cavalier King Cavalier King (Standard) mix Charles Spaniel Charles Spaniel **Breed Reveal Video** 0:49 BREED <u>ਮੇ</u>ਮੇ < > DOGS LIKE MINE Explore Cavapoos 3 :16 My Account More "s Patsy's Results Add a Dog EmbarkVet.com (/members/add-a-dog) (https://embarkvet.com) Profile (/members/results/profile? My Dogs (/) Pet Insurance (https://embarkpetinsuranceservices.com/?petName=Cavapoos 3 :16 "s i=6) Patsy&petHandle=cavapoos316spatsy&inbound=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUz11NiJ9.eyJwYXJ0bmVyljoiZW1iYXJr

CAVAPOOS 3 :16 "S PATSY

Veterinary Report by Embark

embarkvet.com

Test Date: September 6th, 2023

Customer-supplied information

Owner Name: North America Doodles Dog Name: Cavapoos 3 :16 "s Patsy Sex: Female (intact) Date of birth: 04/01/22

Breed type: designer Breed: Cavapoo Breed registration: N/A Microchip: N/A

Genetic summary

Genetic breed identification: Cavapoo

Breed mix:

Cavalier King Charles Spaniel: 50.0%
Poodle (Small): 43.1%
Poodle (Standard): 6.9%

Predicted adult weight: **20 lbs** Calculated from 17 size genes.

Life stage: **Young adult** Based on date of birth provided.

Karyogram (Chromosome painting)

\oslash	Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear
\oslash	Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant)	Clear
\oslash	Canine Multiple System Degeneration (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
\oslash	Cardiomyopathy and Juvenile Mortality (YARS2)	Clear
\oslash	Centronuclear Myopathy, CNM (PTPLA)	Clear
\oslash	Cerebellar Hypoplasia (VLDLR, Eurasier Variant)	Clear
\oslash	Chondrodystrophy (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant)	Clear
\oslash	Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
\oslash	Cleft Palate, CP1 (DLX6 intron 2, Nova Scotia Duck Tolling Retriever Variant)	Clear
\oslash	Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant)	Clear
\oslash	Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant)	Clear
\oslash	Collie Eye Anomaly (NHEJ1)	Clear
\oslash	Complement 3 Deficiency, C3 Deficiency (C3)	Clear
\oslash	Congenital Cornification Disorder (NSDHL, Chihuahua Variant)	Clear
\oslash	Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant)	Clear
\oslash	Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)	Clear
\oslash	Congenital Hypothyroidism with Goiter (TPO Intron 13, French Bulldog Variant)	Clear
\oslash	Congenital Hypothyroidism with Goiter (SLC5A5, Shih Tzu Variant)	Clear

\oslash	Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
\oslash	Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)	Clear
\oslash	Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)	Clear
\oslash	Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
\oslash	Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant)	Clear
\oslash	Congenital Stationary Night Blindness (LRIT3, Beagle Variant)	Clear
\oslash	Congenital Stationary Night Blindness (RPE65, Briard Variant)	Clear
\oslash	Craniomandibular Osteopathy, CMO (SLC37A2)	Clear
\oslash	Craniomandibular Osteopathy, CMO (SLC37A2 Intron 16, Basset Hound Variant)	Clear
\oslash	Cystinuria Type I-A (SLC3A1, Newfoundland Variant)	Clear
\oslash	Cystinuria Type II-A (SLC3A1, Australian Cattle Dog Variant)	Clear
\oslash	Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant)	Clear
\oslash	Day Blindness (CNGB3 Deletion, Alaskan Malamute Variant)	Clear
\oslash	Day Blindness (CNGA3 Exon 7, German Shepherd Variant)	Clear
\oslash	Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant)	Clear
\oslash	Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant)	Clear
\oslash	Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A)	Clear
\oslash	Demyelinating Polyneuropathy (SBF2/MTRM13)	Clear

\oslash	Dental-Skeletal-Retinal Anomaly (MIA3, Cane Corso Variant)	Clear
\oslash	Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
\oslash	Dilated Cardiomyopathy, DCM (RBM20, Schnauzer Variant)	Clear
\oslash	Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1)	Clear
\oslash	Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2)	Clear
\oslash	Disproportionate Dwarfism (PRKG2, Dogo Argentino Variant)	Clear
\oslash	Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant)	Clear
\oslash	Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)	Clear
\oslash	Early Bilateral Deafness (LOXHD1 Exon 38, Rottweiler Variant)	Clear
\oslash	Early Onset Adult Deafness, EOAD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
\oslash	Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant)	Clear
\oslash	Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant)	Clear
\oslash	Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant)	Clear
\oslash	Enamel Hypoplasia (ENAM SNP, Parson Russell Terrier Variant)	Clear
\oslash	Exercise-Induced Collapse, EIC (DNM1)	Clear
\oslash	Factor VII Deficiency (F7 Exon 5)	Clear
\oslash	Factor XI Deficiency (F11 Exon 7, Kerry Blue Terrier Variant)	Clear
\oslash	Familial Nephropathy (COL4A4 Exon 3, Cocker Spaniel Variant)	Clear

\oslash	Familial Nephropathy (COL4A4 Exon 30, English Springer Spaniel Variant)	Clear
\oslash	Fanconi Syndrome (FAN1, Basenji Variant)	Clear
\oslash	Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2, Giant Schnauzer Variant)	Clear
\oslash	Glanzmann's Thrombasthenia Type I (ITGA2B Exon 13, Great Pyrenees Variant)	Clear
\oslash	Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12, Otterhound Variant)	Clear
\oslash	Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5, Terrier Variant)	Clear
\oslash	Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
\oslash	Glycogen Storage Disease Type IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant)	Clear
\oslash	Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet and English Springer Spaniel Variant)	Clear
\oslash	Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Wachtelhund Variant)	Clear
\oslash	GM1 Gangliosidosis (GLB1 Exon 2, Portuguese Water Dog Variant)	Clear
\oslash	GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu Variant)	Clear
\oslash	GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)	Clear
\oslash	GM2 Gangliosidosis (HEXA, Japanese Chin Variant)	Clear
\oslash	Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)	Clear
\oslash	Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear
\oslash	Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD (OLFM3)	Clear
\oslash	Hemophilia A (F8 Exon 11, German Shepherd Variant 1)	Clear

\oslash	Hemophilia A (F8 Exon 1, German Shepherd Variant 2)	Clear
\oslash	Hemophilia A (F8 Exon 10, Boxer Variant)	Clear
\oslash	Hemophilia B (F9 Exon 7, Terrier Variant)	Clear
\oslash	Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)	Clear
\oslash	Hereditary Ataxia, Cerebellar Degeneration (RAB24, Old English Sheepdog and Gordon Setter Variant)	Clear
\oslash	Hereditary Cataracts (HSF4 Exon 9, Australian Shepherd Variant)	Clear
\oslash	Hereditary Footpad Hyperkeratosis (FAM83G, Terrier and Kromfohrlander Variant)	Clear
\oslash	Hereditary Footpad Hyperkeratosis (DSG1, Rottweiler Variant)	Clear
\oslash	Hereditary Nasal Parakeratosis (SUV39H2 Intron 4, Greyhound Variant)	Clear
\oslash	Hereditary Nasal Parakeratosis, HNPK (SUV39H2)	Clear
\oslash	Hereditary Vitamin D-Resistant Rickets (VDR)	Clear
\oslash	Hypocatalasia, Acatalasemia (CAT)	Clear
\oslash	Hypomyelination and Tremors (FNIP2, Weimaraner Variant)	Clear
\oslash	Hypophosphatasia (ALPL Exon 9, Karelian Bear Dog Variant)	Clear
\oslash	Ichthyosis (NIPAL4, American Bulldog Variant)	Clear
\oslash	Ichthyosis (ASPRV1 Exon 2, German Shepherd Variant)	Clear
\oslash	Ichthyosis (SLC27A4, Great Dane Variant)	Clear
\oslash	Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant)	Clear

\oslash	Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)	Clear
\oslash	Inflammatory Myopathy (SLC25A12)	Clear
\oslash	Inherited Myopathy of Great Danes (BIN1)	Clear
\oslash	Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant)	Clear
\oslash	Intestinal Lipid Malabsorption (ACSL5, Australian Kelpie)	Clear
\oslash	Junctional Epidermolysis Bullosa (LAMA3 Exon 66, Australian Cattle Dog Variant)	Clear
\oslash	Junctional Epidermolysis Bullosa (LAMB3 Exon 11, Australian Shepherd Variant)	Clear
\oslash	Juvenile Epilepsy (LGI2)	Clear
\oslash	Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant)	Clear
\oslash	Juvenile Myoclonic Epilepsy (DIRAS1)	Clear
\oslash	L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)	Clear
\oslash	Lagotto Storage Disease (ATG4D)	Clear
\oslash	Laryngeal Paralysis (RAPGEF6, Miniature Bull Terrier Variant)	Clear
\oslash	Late Onset Spinocerebellar Ataxia (CAPN1)	Clear
\oslash	Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
\oslash	Leonberger Polyneuropathy 1 (LPN1, ARHGEF10)	Clear
\oslash	Leonberger Polyneuropathy 2 (GJA9)	Clear
\oslash	Lethal Acrodermatitis, LAD (MKLN1)	Clear

\oslash	Leukodystrophy (TSEN54 Exon 5, Standard Schnauzer Variant)	Clear
\oslash	Ligneous Membranitis, LM (PLG)	Clear
\oslash	Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant)	Clear
\oslash	Limb-Girdle Muscular Dystrophy 2D (SGCA Exon 3, Miniature Dachshund Variant)	Clear
\oslash	Long QT Syndrome (KCNQ1)	Clear
\oslash	Lundehund Syndrome (LEPREL1)	Clear
\oslash	Macular Corneal Dystrophy, MCD (CHST6)	Clear
\oslash	Malignant Hyperthermia (RYR1)	Clear
\oslash	May-Hegglin Anomaly (MYH9)	Clear
\oslash	Methemoglobinemia (CYB5R3, Pit Bull Terrier Variant)	Clear
\oslash	Methemoglobinemia (CYB5R3)	Clear
\oslash	Microphthalmia (RBP4 Exon 2, Soft Coated Wheaten Terrier Variant)	Clear
\oslash	Mucopolysaccharidosis IIIB, Sanfilippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear
\oslash	Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant)	Clear
\oslash	Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand Huntaway Variant)	Clear
\oslash	Mucopolysaccharidosis Type VI, Maroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pinscher Variant)	Clear
\oslash	Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant)	Clear
\oslash	Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear

\oslash	Multiple Drug Sensitivity (ABCB1)	Clear
\oslash	Muscular Dystrophy (DMD, Golden Retriever Variant)	Clear
\oslash	Musladin-Lueke Syndrome, MLS (ADAMTSL2)	Clear
\oslash	Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant)	Clear
\oslash	Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)	Clear
\oslash	Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)	Clear
\oslash	Narcolepsy (HCRTR2 Exon 1, Dachshund Variant)	Clear
\oslash	Narcolepsy (HCRTR2 Intron 4, Doberman Pinscher Variant)	Clear
\oslash	Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)	Clear
\oslash	Nemaline Myopathy (NEB, American Bulldog Variant)	Clear
\oslash	Neonatal Cerebellar Cortical Degeneration (SPTBN2, Beagle Variant)	Clear
\oslash	Neonatal Interstitial Lung Disease (LAMP3)	Clear
\oslash	Neuroaxonal Dystrophy, NAD (VPS11, Rottweiler Variant)	Clear
\oslash	Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear

\oslash	Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier Variant)	Clear
\oslash	Oculocutaneous Albinism, OCA (SLC45A2 Exon 6, Bullmastiff Variant)	Clear
\oslash	Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant)	Clear
\oslash	Oculoskeletal Dysplasia 2 (COL9A2, Samoyed Variant)	Clear
\oslash	Osteogenesis Imperfecta (COL1A2, Beagle Variant)	Clear
\oslash	Osteogenesis Imperfecta (SERPINH1, Dachshund Variant)	Clear
\oslash	Osteogenesis Imperfecta (COL1A1, Golden Retriever Variant)	Clear
\oslash	P2Y12 Receptor Platelet Disorder (P2Y12)	Clear
\oslash	Pachyonychia Congenita (KRT16, Dogue de Bordeaux Variant)	Clear
\oslash	Paroxysmal Dyskinesia, PxD (PIGN)	Clear
\oslash	Persistent Mullerian Duct Syndrome, PMDS (AMHR2)	Clear
\oslash	Pituitary Dwarfism (POU1F1 Intron 4, Karelian Bear Dog Variant)	Clear

\oslash	Platelet Factor X Receptor Deficiency, Scott Syndrome (TMEM16F)	Clear
\oslash	Polycystic Kidney Disease, PKD (PKD1)	Clear
\oslash	Pompe's Disease (GAA, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear
\oslash	Prekallikrein Deficiency (KLKB1 Exon 8)	Clear
\oslash	Primary Ciliary Dyskinesia, PCD (NME5, Alaskan Malamute Variant)	Clear
\oslash	Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3, Old English Sheepdog Variant)	Clear
\oslash	Primary Hyperoxaluria (AGXT)	Clear
\oslash	Primary Lens Luxation (ADAMTS17)	Clear
\oslash	Primary Open Angle Glaucoma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
\oslash	Primary Open Angle Glaucoma (ADAMTS10 Exon 17, Beagle Variant)	Clear
\oslash	Primary Open Angle Glaucoma (ADAMTS10 Exon 9, Norwegian Elkhound Variant)	Clear
\oslash	Primary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei Variant)	Clear
\oslash	Progressive Retinal Atrophy (SAG)	Clear
\oslash	Progressive Retinal Atrophy (IFT122 Exon 26, Lapponian Herder Variant)	Clear
\oslash	Progressive Retinal Atrophy, Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)	Clear
\oslash	Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)	Clear
\oslash	Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant)	Clear
\oslash	Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear

\oslash	Progressive Retinal Atrophy, PRA1 (CNGB1)	Clear
\oslash	Progressive Retinal Atrophy, PRA3 (FAM161A)	Clear
\oslash	Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant)	Clear
\oslash	Progressive Retinal Atrophy, rcd3 (PDE6A)	Clear
\oslash	Protein Losing Nephropathy, PLN (NPHS1)	Clear
\oslash	Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant)	Clear
\oslash	Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant)	Clear
\oslash	Pyruvate Kinase Deficiency (PKLR Exon 7, Beagle Variant)	Clear
\oslash	Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant)	Clear
\oslash	Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)	Clear
\oslash	Pyruvate Kinase Deficiency (PKLR Exon 7, Pug Variant)	Clear
\oslash	Raine Syndrome (FAM20C)	Clear
\oslash	Recurrent Inflammatory Pulmonary Disease, RIPD (AKNA, Rough Collie Variant)	Clear
\oslash	Renal Cystadenocarcinoma and Nodular Dermatofibrosis (FLCN Exon 7)	Clear
\oslash	Retina Dysplasia and/or Optic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
\oslash	Sensory Neuropathy (FAM134B, Border Collie Variant)	Clear
\oslash	Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant)	Clear
\oslash	Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant)	Clear

\oslash	Shaking Puppy Syndrome (PLP1, English Springer Spaniel Variant)	Clear
\oslash	Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)	Clear
\oslash	Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)	Clear
\oslash	Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant)	Clear
\oslash	Spinocerebellar Ataxia (SCN8A, Alpine Dachsbracke Variant)	Clear
\oslash	Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)	Clear
\oslash	Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10)	Clear
\oslash	Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2)	Clear
\oslash	Stargardt Disease (ABCA4 Exon 28, Labrador Retriever Variant)	Clear
\oslash	Succinic Semialdehyde Dehydrogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
\oslash	Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)	Clear
\oslash	Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant)	Clear
\oslash	Thrombopathia (RASGRP1 Exon 8, Landseer Variant)	Clear
\oslash	Trapped Neutrophil Syndrome, TNS (VPS13B)	Clear
\oslash	Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
\oslash	Ullrich-like Congenital Muscular Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
\oslash	Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
\bigcirc	Urate Kidney & Bladder Stones (SLC2A9)	Clear

\oslash	Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant)	Clear
\oslash	Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant)	Clear
\oslash	Von Willebrand Disease Type III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Variant)	Clear
\oslash	Von Willebrand Disease Type III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
\oslash	X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
\oslash	X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant)	Clear
\oslash	X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)	Clear
\oslash	X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
\oslash	X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
\oslash	Xanthine Urolithiasis (XDH, Mixed Breed Variant)	Clear
\oslash	β-Mannosidosis (MANBA Exon 16, Mixed-Breed Variant)	Clear

HEALTH REPORT

Increased risk result

Intervertebral Disc Disease (Type I)

Cavapoos 3 :16 "s Patsy inherited one copy of the variant we tested for Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD

Cavapoos 3 :16 "s Patsy is at increased risk for Type I IVDD

How to interpret this result

Cavapoos 3 :16 "s Patsy has one copy of an FGF4 retrogene on chromosome 12. In some breeds such as Beagles, Cocker Spaniels, and Dachshunds (among others) this variant is found in nearly all dogs. While those breeds are known to have an elevated risk of IVDD, many dogs in those breeds never develop IVDD. For mixed breed dogs and purebreds of other breeds where this variant is not as common, risk for Type I IVDD is greater for individuals with this variant than for similar dogs.

What is Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD?

Type I Intervertebral Disc Disease (IVDD) is a back/spine issue that refers to a health condition affecting the discs that act as cushions between vertebrae. With Type I IVDD, affected dogs can have a disc event where it ruptures or herniates towards the spinal cord. This pressure on the spinal cord causes neurologic signs which can range from a wobbly gait to impairment of movement. Chondrodystrophy (CDDY) refers to the relative proportion between a dog's legs and body, wherein the legs are shorter and the body longer. There are multiple different variants that can cause a markedly chondrodystrophic appearance as observed in Dachshunds and Corgis. However, this particular variant is the only one known to also increase the risk for IVDD.

When signs & symptoms develop in affected dogs

Signs of CDDY are recognized in puppies as it affects body shape. IVDD is usually first recognized in adult dogs, with breed specific differences in age of onset.

Signs & symptoms

Research indicates that dogs with one or two copies of this variant have a similar risk of developing IVDD. However, there are some breeds (e.g. Beagles and Cocker Spaniels, among others) where this variant has been passed down to nearly all dogs of the breed and most do not show overt clinical signs of the disorder. This suggests that there are other genetic and environmental factors (such as weight, mobility, and family history) that contribute to an individual dog's risk of developing clinical IVDD. Signs of IVDD include neck or back pain, a change in your dog's walking pattern (including dragging of the hind limbs), and paralysis. These signs can be mild to severe, and if your dog starts exhibiting these signs, you should schedule an appointment with your veterinarian for a diagnosis.

How vets diagnose this condition

For CDDY, dogs with one copy of this variant may have mild proportional differences in their leg length. Dogs with two copies of this variant will often have visually longer bodies and shorter legs. For IVDD, a neurological exam will be performed on any dog showing suspicious signs. Based on the result of this exam, radiographs to detect the presence of calcified discs or advanced imaging (MRI/CT) to detect a disc rupture may be recommended.

How this condition is treated

IVDD is treated differently based on the severity of the disease. Mild cases often respond to medical management which includes cage rest and pain management, while severe cases are often treated with surgical intervention. Both conservative and surgical treatment should be followed up with rehabilitation and physical therapy.

Actions to take if your dog is affected

- Follow veterinary advice for diet, weight management, and daily exercise. Overweight dogs and those with insufficient exercise are thought to be at higher risk of developing clinical disease.
- Ramps up to furniture, avoiding flights of stairs, and using a harness on walks will also help minimize some of the risk of an IVDD event by reducing stress on the back.

• In breeds where this variant is extremely common, this genetic health result should not be a deciding factor when evaluating a dog for breeding or adoption purposes.

HEALTH REPORT

Notable result

Proportionate Dwarfism

Cavapoos 3 :16 "s Patsy inherited one copy of the variant we tested for Proportionate Dwarfism

What does this result mean?

Because this variant is inherited in an autosomal recessive manner (meaning dogs need two copies of the variant to develop the disease), Cavapoos 3 :16 "s Patsy is unlikely to develop this condition due to the variant. This result may be important if you decide to breed this dog - we recommend genetic testing potential mates for this condition.

What is Proportionate Dwarfism?

This variant in the GH1 gene may lead to a growth hormone (GH) abnormality and causes proportionately small stature, coat abnormalities and low blood sugar (hypoglycemia).

When signs & symptoms develop in affected dogs

Clinical signs may be visible as early as a few months of life, but coat and dental abnormalities and small size may not be clear until puppies are older.

How vets diagnose this condition

Clinical history, genetic testing, and laboratory testing can be used to diagnose this form of Proportionate Dwarfism.

How this condition is treated

Your veterinarian may recommend various treatments, including correcting blood sugar, as indicated."

Actions to take if your dog is affected

• Monitor for signs of hypoglycemia including not eating, lethargy, and inability to stand. Call your veterinarian immediately for advice if you notice these signs.

Coefficient of Inbreeding (COI)

Genetic Result: 1%

Our genetic COI measures the proportion of your dog's genome (her genes) where the genes on the mother's side are identical by descent to those on the father's side. The higher your dog's coefficient of inbreeding (the percentage), the more inbred your dog is.

Your Dog's COI

This graph represents where your dog's inbreeding levels fall on a scale compared to both dogs with a similar breed makeup to her (the blue bars) and all purebred dogs (the grey line).

Genetic Diversity and Inbreeding

More on the Science

Embark scientists, along with our research partners at Cornell University, have shown the impact of inbreeding on longevity and fertility and developed a state-of-the-art, peer-reviewed method for accurately measuring COI and predicting average COI in litters.

Citations

Sams & Boyko 2019 "Fine-Scale Resolution of Runs of Homozygosity Reveal Patterns of Inbreeding and Substantial Overlap with Recessive Disease Genotypes in Domestic Dogs" (https://www.ncbi.nlm.nih.gov/pubmed/30429214)

Chu et al 2019 "Inbreeding depression causes reduced fecundity in Golden Retrievers" (https://link.springer.com/article/10.1007/s00335-019-09805-4)

Yordy et al 2019 "Body size, inbreeding, and lifespan in domestic dogs" (https://www.semanticscholar.org/paper/Body-size%2C-inbreeding%2C-and-lifespan-in-domestic-Yordy-Kraus/61d0fa7a71afb26f547f0fb7ff71e23a14d19d2c)

About Embark

Embark Veterinary is a canine genetics company offering research-grade genetic tests to pet owners and breeders. Every Embark test examines over 200,000 genetic markers, and provides results for over 250 genetic health conditions, breed identification, clinical tools, and more.

Embark is a research partner of the Cornell University College of Veterinary Medicine and collaborates with scientists and registries to accelerate genetic research in canine health. We make it easy for customers and vets to understand, share and make use of their dog's unique genetic profile to improve canine health and happiness.

Learn more at embarkvet.com

Veterinarians and hospitals can send inquiries to veterinarians@embarkvet.com.