

Certificate of Breed

OWNER'S NAME: North America Doodles

DOG'S NAME: Cavapoos 3 :16 "s Reba

TEST DATE: September 6th, 2023

This certifies the authenticity of **Cavapoos 3 :16 "s Reba**'s canine genetic background as determined following careful analysis of more than 200,000 genetic markers. Welcome to the **Embark** family!

WOLFINESS 0.9% MEDIUM

MATERNAL **A224** HAPLOTYPE

CAVALIER KING CHARLES SPANIEL

100.0% Cavalier King Charles Spaniel

Adam Boyko, Ph.D. CHIEF SCIENCE OFFICER

Ryan Boyko CHIEF EXECUTIVE OFFICER

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

FAMILY TREE

Fun Fact

The breed experienced two large bursts in popularity. The first is when Queen Victoria revived the dying breed. The second was when Charlotte, a popular character from the popular show Sex and the City adopted one on TV. Test Date: September 6th, 2023

embk.me/cavapoos316sreba

CAVALIER KING CHARLES SPANIEL

The Cavalier King Charles Spaniel is one of the most popular dog breeds in the United States, and with good reason. Their affectionate personalities combined with their need to be close to their humans make them a lovely breed of choice for families. They tend to get along well with children and peaceably with other dogs and animals in the home (though as the breed used to be used for hunting, caution around small animals should be exercised). The Cavalier has an interesting history -- their ancestors were dogs of the British monarchy, but over time, the breed began to die out as dogs with shorter muzzles were favored in the 1800s. They were crossed with Pugs and some other breeds to change their appearance. However, Roswell Eldridge sought out King Charles Spaniels that had longer muzzles, and recreated the Cavalier as it used to be from those dogs.

English Springer Spaniel Cousin breed

English Cocker Spaniel Cousin breed

Cocker Spaniel Cousin breed

Sussex Spaniel Cousin breed

Rembark

RELATED BREEDS

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

MATERNAL LINE

Through Cavapoos 3 :16 "s Reba's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

A1a is the most common maternal lineage among Western dogs. This lineage traveled from the site of dog domestication in Central Asia to Europe along with an early dog expansion perhaps 10,000 years ago. It hung around in European village dogs for many millennia. Then, about 300 years ago, some of the prized females in the line were chosen as the founding dogs for several dog breeds. That set in motion a huge expansion of this lineage. It's now the maternal lineage of the overwhelming majority of Mastiffs, Labrador Retrievers and Gordon Setters. About half of Boxers and less than half of Shar-Pei dogs descend from the A1a line. It is also common across the world among village dogs, a legacy of European colonialism.

HAPLOTYPE: A224

Part of the large A1a haplogroup, this haplotype is found in village dogs in Peru, Fiji, and Namibia. Among breeds, we see this haplotype most frequently in Cavalier King Charles Spaniels, Mastiffs, and Boston Terriers.

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

RESULT

TRAITS: BASE COAT COLOR

TRAIT

Dark or Light Fur | E (Extension) Locus | Gene: Melanocortin Receptor 1 (MC1R) | Genetic Result: ee

This gene helps determine whether a dog can produce dark (black or brown) hairs or lighter yellow or red hairs. Any result except for **ee** means that the dog can produce dark hairs. An **ee** result means that the dog does not produce dark hairs at all, and will have lighter yellow or red hairs over their entire body.

Did You Know? If a dog has a **ee** result then the fur's actual shade can range from a deep copper to yellow/gold to cream - the exact color cannot be predicted solely from this result, and will depend on other genetic factors.

Dark brown pigment | Cocoa | Gene: HPS3 | Genetic Result: NN

Dogs with the **coco** genotype will produce dark brown pigment instead of black in both their hair and skin. Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** variant on to their puppies. Dogs that have the **coco** genotype as well as the **bb** genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus.

Did You Know? The **co** variant and the dark brown "cocoa" coat color have only been documented in French Bulldogs. Dogs with the cocoa coat color are sometimes born with light brown coats that darken as they reach maturity.

Red Pigment Intensity LINKAGE | I (Intensity) Loci | Genetic Result: Intense Red Pigmentation

Intensity refers to the concentration of red pigment in the coat. Dogs with more densely concentrated (intense) pigment will be a deeper red, while dogs with less concentrated (dilute) pigment will be tan, yellow, cream, or white. Five locations in the dog genome explain approximately 70% of red pigmentation intensity variation across all dogs. Because the locations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Did You Know? One of the genes that influences pigment intensity in dogs, TYR, is also responsible for intensity variation in domestic mice, cats, cattle, rabbits, and llamas. In dogs and humans, more genes are involved.

Light colored fur (cream to red)

No impact on skin color

Any pigmented fur likely apricot or red

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

TRAITS: BASE COAT COLOR (CONTINUED)

TRAIT

Brown or Black Pigment | B (Brown) Locus | Gene: Tyrosinase Related Protein 1 (TYRP1) | Genetic Result: BB

This gene helps determine whether a dog produces brown or black pigments. Dogs with a **bb** result produce brown pigment instead of black in both their hair and skin, while dogs with a **Bb** or **BB** result produce black pigment. Dogs that have **ee** at the E (Extension) Locus and **bb** at this B (Brown) Locus are likely to have red or cream coats and brown noses, eye rims, and footpads, which is sometimes referred to as "Dudley Nose" in Labrador Retrievers.

Did You Know? "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

Color Dilution | D (Dilute) Locus | Gene: Melanophilin (MLPH) | Genetic Result: DD

This gene helps determine whether a dog has lighter "diluted" pigment. A dog with a **Dd** or **DD** result will not be dilute. A dog with a **dd** result will have all their black or brown pigment lightened ("diluted") to gray or light brown, and may lighten red pigment to cream. This affects their fur, skin, and sometimes eye color. The D locus result that we report is determined by two different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and a less common allele known as "**d2**". Dogs with one **d1** allele and one **d2** allele are typically dilute. To view your dog's **d1** and **d2** test results, click the "SEE DETAILS" link in the upper right hand corner of the "Base Coat Color" section of the Traits page, and then click the "VIEW SUBLOCUS RESULTS" link at the bottom of the page.

Did You Know? There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Dilute dogs, especially in certain breeds, have a higher incidence of Color Dilution Alopecia which causes hair loss in some patches.

Likely black colored

RESULT

nose/feet

Dark (non-dilute) skin

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

RESULT

TRAITS: COAT COLOR MODIFIERS

TRAIT

Hidden Patterning | K (Dominant Black) Locus | Gene: Canine Beta-Defensin 103 (CBD103) | Genetic Result: k^yk^y

This gene helps determine whether the dog has a black coat. Dogs with a k^yk^y result will show a coat color pattern based on the result they have at the A (Agouti) Locus. A K^BK^B or K^Bk^y result means the dog is dominant black, which overrides the fur pattern that would otherwise be determined by the A (Agouti) Locus. These dogs will usually have solid black or brown coats, or if they have **ee** at the E (Extension) Locus then red/cream coats, regardless of their result at the A (Agouti) Locus. Dogs who test as K^Bk^y may be brindle rather than black or brown.

Did You Know? Even if a dog is "dominant black" several other genes could still impact the dog's fur and cause other patterns, such as white spotting.

Body Pattern | A (Agouti) Locus | Gene: Agouti Signalling Protein (ASIP) | Genetic Result: a^ta^t

This gene is responsible for causing different coat patterns. It only affects the fur of dogs that do not have ee at the E (Extension) Locus and do have k^yk^y at the K (Dominant Black) Locus. It controls switching between black and red pigment in hair cells, which means that it can cause a dog to have hairs that have sections of black and sections of red/cream, or hairs with different colors on different parts of the dog's body. Sable or Fawn dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti or Wolf Sable dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Did You Know? The ASIP gene causes interesting coat patterns in many other species of animals as well as dogs.

Facial Fur Pattern | E (Extension) Locus | Gene: Melanocortin Receptor 1 (MC1R) | Genetic Result: ee

In addition to determining if a dog can develop dark fur at all, this gene can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of \mathbf{E}^{m} in their result will have a mask, which is dark facial fur as seen in the German Shepherd and Pug. Dogs with no \mathbf{E}^{m} in their result but one or two copies of \mathbf{E}^{g} will instead have a "widow's peak", which is dark forehead fur.

Did You Know? The widow's peak is seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino".

No impact on coat color

No impact on coat pattern

No dark fur anywhere

Test Date: September 6th, 2023

TRAITS: COAT COLOR MODIFIERS (CONTINUED)

CAVAPOOS 3 :16 "S REBA

TRAIT

Saddle Tan | Gene: RALY | Genetic Result: II

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.

Did You Know? The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd.

White Spotting | S (White Spotting) Locus | Gene: MITF | Genetic Result: spsp

This gene is responsible for most of the white spotting observed in dogs. Dogs with a result of **spsp** will have a nearly white coat or large patches of white in their coat. Dogs with a result of **Ssp** will have more limited white spotting that is breed-dependent. A result of **Ss** means that a dog likely has no white or minimal white in their coat. The S Locus does not explain all white spotting patterns in dogs and other causes are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their result at this gene.

Did You Know? Any dog can have white spotting regardless of coat color. The colored sections of the coat will reflect the dog's other genetic coat color results.

Roan LINKAGE | R (Roan) Locus | Gene: USH2A | Genetic Result: rr

This gene, along with the S Locus, regulates whether a dog will have roaning. Dogs with at least one copy of **R** will likely have roaning on otherwise uniformly unpigmented white areas created by the S Locus. Roan may not be visible if white spotting is limited to small areas, such as the paws, chest, face, or tail. The extent of roaning varies from uniform roaning to non-uniform roaning, and patchy, non-uniform roaning may look similar to ticking. Roan does not appear in white areas created by other genes, such as a combination of the E Locus and I Locus (for example, Samoyeds). The roan pattern can appear with or without ticking.

Did You Know? Roan, tick, and Dalmatians' spots become visible a few weeks after birth. The R Locus is probably involved in the development of Dalmatians' spots.

No impact on coat pattern

Likely to have large white areas in coat

Likely no impact on coat pattern

embk.me/cavapoos316sreba

RESULT

DNA Test Report

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

No impact on coat

color

RESULT

TRAITS: COAT COLOR MODIFIERS (CONTINUED)

TRAIT

Merle | M (Merle) Locus | Gene: PMEL | Genetic Result: mm

This gene is responsible for mottled or patchy coat color in some dogs. Dogs with an **M*m** result are likely to appear merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to have merle or double merle coat patterning. Dogs with an **mm** result are unlikely to have a merle coat pattern.

Did You Know? Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog.

Harlequin | Gene: PSMB | Genetic Result: hh

This gene, along with the M Locus, determines whether a dog will have harlequin patterning. This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin.

No impact on coat pattern

Did You Know? While many harlequin dogs are white with black patches, some dogs have grey, sable, or brindle patches of color, depending on their genotypes at other coat color genes.

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings LINKAGE | Gene: RSPO2 | Genetic Result: II

This gene is responsible for "furnishings", which is another name for the mustache, beard, and eyebrows that are characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with an **FF** or **FI** result is likely to have furnishings. A dog with an **II** result will not have furnishings. We measure this result using a linkage test.

Did You Know? In breeds that are expected to have furnishings, dogs without furnishings are the exception - this is sometimes called an "improper coat".

Coat Length | Gene: FGF5 | Genetic Result: TT

This gene is known to affect hair/fur length in many different species, including cats, dogs, mice, and humans. In dogs, a **TT** result means the dog is likely to have a long, silky coat as seen in the Yorkshire Terrier and the Long Haired Whippet. A **GG** or **GT** result is likely to mean a shorter coat, like in the Boxer or the American Staffordshire Terrier.

Did You Know? In certain breeds, such as Corgi, the long coat is described as "fluff."

Shedding | Gene: MC5R | Genetic Result: TT

This gene affects how much a dog sheds. Dogs with furnishings or wire-haired coats tend to be low shedders regardless of their result for this gene. In other dogs, a **CC** or **CT** result indicates heavy or seasonal shedding, like many Labradors and German Shepherd Dogs. Dogs with a **TT** result tend to be lighter shedders, like Boxers, Shih Tzus and Chihuahuas.

Coat Texture | Gene: KRT71 | Genetic Result: CC

For dogs with long fur, dogs with a **TT** or **CT** result will likely have a wavy or curly coat like the coat of Poodles and Bichon Frises. Dogs with a **CC** result will likely have a straight coat—unless the dog has a "Likely Furnished" result for the Furnishings trait, since this can also make the coat more curly.

Did You Know? Dogs with short coats may have straight coats, whatever result they have for this gene.

Hairlessness (Xolo type) LINKAGE | Gene: FOXI3 | Genetic Result: NN

Rembark

Likely unfurnished (no mustache, beard, and/or eyebrows)

RESULT

Likely long coat

Likely light shedding

Likely straight coat

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Hairlessness (Terrier type) | Gene: SGK3 | Genetic Result: NN

This gene is responsible for Hairlessness in the American Hairless Terrier. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Oculocutaneous Albinism Type 2 LINKAGE | Gene: SLC45A2 | Genetic Result: NN

This gene causes oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism. Dogs with a **DD** result will have OCA. Effects include severely reduced or absent pigment in the eyes, skin, and hair, and sometimes vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a **ND** result will not be affected, but can pass the mutation on to their offspring. We measure this result using a linkage test.

Did You Know? This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual.

RESULT

Very unlikely to be hairless

Likely not albino

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length | Gene: BMP3 | Genetic Result: CC

This gene affects muzzle length. A dog with a **AC** or **CC** result is likely to have a medium-length muzzle like a Staffordshire Terrier or Labrador, or a long muzzle like a Whippet or Collie. A dog with a **AA** result is likely to have a short muzzle, like an English Bulldog, Pug, or Pekingese.

Did You Know? At least five different genes affect snout length in dogs, with BMP3 being the only one with a known causal mutation. For example, the muzzle length of some breeds, including the long-snouted Scottish Terrier or the short-snouted Japanese Chin, appear to be caused by other genes. This means your dog may have a long or short snout due to other genetic factors. Embark is working to figure out what these might be.

Tail Length | Gene: T | Genetic Result: CC

This is one of the genes that can cause a short bobtail. Most dogs have a **CC** result and a long tail. Dogs with a **CG** result are likely to have a bobtail, which is an unusually short or absent tail. This can be seen in many "natural bobtail" breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with such a result do not survive to birth.

Did You Know? While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, it is not always caused by this gene. This suggests that other unknown genetic effects can also lead to a natural bobtail.

Hind Dew Claws | Gene: LMBR1 | Genetic Result: CC

This is one of the genes that can cause hind dew claws, which are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with a **CT** or **TT** result have about a 50% chance of having hind dewclaws. Hind dew claws can also be caused by other, still unknown, genes. Embark is working to figure those out.

Did You Know? Hind dew claws are commonly found in certain breeds such as the Saint Bernard.

Likely medium or long muzzle

RESULT

Likely normal-length tail

Unlikely to have hind dew claws

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Back Muscling & Bulk (Large Breed) | Gene: ACSL4 | Genetic Result: CC

This gene can cause heavy muscling along the back and trunk in characteristically "bulky" large-breed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. A dog with the **TT** result is likely to have heavy muscling. Leaner-shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound generally have a **CC** result. The **TC** result also indicates likely normal muscling.

Did You Know? This gene does not seem to affect muscling in small or even mid-sized dog breeds with lots of back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Eye Color LINKAGE | Gene: ALX4 | Genetic Result: NN

This gene is associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (nonmerle) Australian Shepherds. Dogs with a **DupDup** or **NDup** result are more likely to have blue eyes, although some dogs may have only one blue eye or may not have blue eyes at all; nevertheless, they can still pass blue eyes to their offspring. Dogs with a **NN** result may have blue eyes due to other factors, such as merle or white spotting. We measure this result using a linkage test.

Did You Know? Embark researchers discovered this gene by studying data from dogs like yours. Who knows what we will be able to discover next? Answer the questions on our research surveys to contribute to future discoveries!

Likely normal muscling

RESULT

Less likely to have blue eyes

DNA Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size 1 Gene: IGF1 Genetic Result: II		
This is one of several genes that influence smaller body size. A result of NN is associat	the size of a dog. A result of II for this gene is associated wit ted with larger body size.	h Smaller
Body Size 2 Gene: IGFR1 Genetic Result: (GG	
This is one of several genes that influence t smaller body size. A result of GG is associat	the size of a dog. A result of AA for this gene is associated w red with larger body size.	ith Larger
Body Size 3 Gene: STC2 Genetic Result: A	ΔΑ	
This is one of several genes that influence t smaller body size. A result of TT is associate	the size of a dog. A result of AA for this gene is associated w ed with larger body size.	ith Smaller
Body Size 4 Gene: GHR - E191K Genetic Re	esult: AA	
This is one of several genes that influence t smaller body size. A result of GG is associat	the size of a dog. A result of AA for this gene is associated w red with larger body size.	ith Smaller
Body Size 5 Gene: GHR - P177L Genetic Re	esult: TT	
This is one of several genes that influence t smaller body size. A result of CC is associat	the size of a dog. A result of TT for this gene is associated wi ed with larger body size.	th Smaller

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

RESULT

TRAITS: PERFORMANCE

TRAIT

Altitude Adaptation | Gene: EPAS1 | Genetic Result: GG

This gene causes dogs to be especially tolerant of low oxygen environments, such as those found at high elevations. Dogs with a **AA** or **GA** result will be less susceptible to "altitude sickness."

Did You Know? This gene was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.

Appetite LINKAGE | Gene: POMC | Genetic Result: NN

This gene influences eating behavior. An **ND** or **DD** result would predict higher food motivation compared to **NN** result, increasing the likelihood to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test.

Did You Know? POMC is actually short for "proopiomelanocortin," and is a large protein that is broken up into several smaller proteins that have biological activity. The smaller proteins generated from POMC control, among other things, distribution of pigment to the hair and skin cells, appetite, and energy expenditure.

Normal altitude tolerance

Normal food motivation

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

HEALTH REPORT

How to interpret Cavapoos 3 :16 "s Reba's genetic health results:

If Cavapoos 3:16 "s Reba inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Cavapoos 3:16 "s Reba for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 254 genetic health risks we analyzed, we found 2 results that you should learn about.

Intervertebral Disc Disease (Type I)

Notable results (1)

Proportionate Dwarfism

✓ Clear results

Breed-relevant (3)

Other (249)

Test Date: September 6th, 2023

embk.me/cavapoos316sreba

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Cavapoos 3 :16 "s Reba. Review any increased risk or notable results to understand her potential risk and recommendations.

Θ	Proportionate Dwarfism (GH1 Exon 5, Chihuahua Variant)	Notable
\oslash	2-DHA Kidney & Bladder Stones (APRT)	Clear
\oslash	Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
\oslash	Alaskan Husky Encephalopathy (SLC19A3)	Clear
\oslash	Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
\oslash	Alexander Disease (GFAP)	Clear
\oslash	ALT Activity (GPT)	Clear
\oslash	Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
\oslash	Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
\oslash	Bald Thigh Syndrome (IGFBP5)	Clear
\oslash	Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
\oslash	Bully Whippet Syndrome (MSTN)	Clear
\oslash	Canine Elliptocytosis (SPTB Exon 30)	Clear
\oslash	Canine Fucosidosis (FUCA1)	Clear
\oslash	Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
\oslash	Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
\oslash	Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
\oslash	Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear

DNA	Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
ОТ	HER RESULTS		
\oslash	Canine Multifocal Retinopathy, cmr3 (BES Lapponian Herder Variant)	T1 Exon 10 Deletion, Finnish and Swedish Lapphund,	Clear
\oslash	Canine Multiple System Degeneration (SE	ERAC1 Exon 4, Chinese Crested Variant)	Clear
\oslash	Canine Multiple System Degeneration (SE	ERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
\oslash	Cardiomyopathy and Juvenile Mortality (Y	(ARS2)	Clear
\oslash	Centronuclear Myopathy, CNM (PTPLA)		Clear
\oslash	Cerebellar Hypoplasia (VLDLR, Eurasier Va	ariant)	Clear
\oslash	Chondrodystrophy (ITGA10, Norwegian El	khound and Karelian Bear Dog Variant)	Clear
\oslash	Cleft Lip and/or Cleft Palate (ADAMTS20,	Nova Scotia Duck Tolling Retriever Variant)	Clear
\oslash	Cleft Palate, CP1 (DLX6 intron 2, Nova Sco	otia Duck Tolling Retriever Variant)	Clear
\oslash	Cobalamin Malabsorption (CUBN Exon 8,	Beagle Variant)	Clear
\oslash	Cobalamin Malabsorption (CUBN Exon 53	, Border Collie Variant)	Clear
\oslash	Collie Eye Anomaly (NHEJ1)		Clear
\oslash	Complement 3 Deficiency, C3 Deficiency	(C3)	Clear
\oslash	Congenital Cornification Disorder (NSDHL	., Chihuahua Variant)	Clear
\oslash	Congenital Hypothyroidism (TPO, Rat, Toy	, Hairless Terrier Variant)	Clear
\oslash	Congenital Hypothyroidism (TPO, Tenterfi	eld Terrier Variant)	Clear
\oslash	Congenital Hypothyroidism with Goiter (T	PO Intron 13, French Bulldog Variant)	Clear
\oslash	Congenital Hypothyroidism with Goiter (S	SLC5A5, Shih Tzu Variant)	Clear

DNA	Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
от	HER RESULTS		
\oslash	Congenital Macrothrombocytopenia (TUBE	1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
\oslash	Congenital Myasthenic Syndrome, CMS (C	DLQ, Labrador Retriever Variant)	Clear
\oslash	Congenital Myasthenic Syndrome, CMS (C	DLQ, Golden Retriever Variant)	Clear
\oslash	Congenital Myasthenic Syndrome, CMS (C	HAT, Old Danish Pointing Dog Variant)	Clear
\oslash	Congenital Myasthenic Syndrome, CMS (C	HRNE, Jack Russell Terrier Variant)	Clear
\oslash	Congenital Stationary Night Blindness (LRI	T3, Beagle Variant)	Clear
\oslash	Congenital Stationary Night Blindness (RP	E65, Briard Variant)	Clear
\oslash	Craniomandibular Osteopathy, CMO (SLC3)	7A2)	Clear
\oslash	Craniomandibular Osteopathy, CMO (SLC3)	7A2 Intron 16, Basset Hound Variant)	Clear
\oslash	Cystinuria Type I-A (SLC3A1, Newfoundland	d Variant)	Clear
\oslash	Cystinuria Type II-A (SLC3A1, Australian Ca	ttle Dog Variant)	Clear
\oslash	Cystinuria Type II-B (SLC7A9, Miniature Pin	scher Variant)	Clear
\oslash	Day Blindness (CNGB3 Deletion, Alaskan N	alamute Variant)	Clear
\oslash	Day Blindness (CNGA3 Exon 7, German She	pherd Variant)	Clear
\oslash	Day Blindness (CNGA3 Exon 7, Labrador Re	triever Variant)	Clear
\oslash	Day Blindness (CNGB3 Exon 6, German Sho	orthaired Pointer Variant)	Clear
\oslash	Deafness and Vestibular Syndrome of Dobe	ermans, DVDob, DINGS (MYO7A)	Clear
\oslash	Demyelinating Polyneuropathy (SBF2/MTR	M13)	Clear

DNA Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
OTHER RESULTS		
O Dental-Skeletal-Retinal Anoma	aly (MIA3, Cane Corso Variant)	Clear
Ø Diffuse Cystic Renal Dysplasia	and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Varian	t) Clear
Dilated Cardiomyopathy, DCM ((RBM20, Schnauzer Variant)	Clear
Oilated Cardiomyopathy, DCM1	(PDK4, Doberman Pinscher Variant 1)	Clear
Dilated Cardiomyopathy, DCM2	(TTN, Doberman Pinscher Variant 2)	Clear
O Disproportionate Dwarfism (PR	KG2, Dogo Argentino Variant)	Clear
O Dystrophic Epidermolysis Bullos	sa (COL7A1, Central Asian Shepherd Dog Variant)	Clear
O Dystrophic Epidermolysis Bullos	sa (COL7A1, Golden Retriever Variant)	Clear
Sarly Bilateral Deafness (LOXHD	1 Exon 38, Rottweiler Variant)	Clear
Sarly Onset Adult Deafness, EOA	AD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
🔗 Early Onset Cerebellar Ataxia (Sf	EL1L, Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Dobern	man Pinscher Variant)	Clear
🔗 Enamel Hypoplasia (ENAM Deleti	ion, Italian Greyhound Variant)	Clear
Enamel Hypoplasia (ENAM SNP, F	Parson Russell Terrier Variant)	Clear
Exercise-Induced Collapse, EIC (DNM1)	Clear
Factor VII Deficiency (F7 Exon 5)		Clear
Factor XI Deficiency (F11 Exon 7. k	(erry Blue Terrier Variant)	Clear
Familial Nephropathy (COLAAA Ex		Clear
C	on o, oocker opaniel Variant)	Clear

DN	IA Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
0	THER RESULTS		
0	Familial Nephropathy (COL4A4 Exor	n 30, English Springer Spaniel Variant)	Clear
\bigotimes	🕑 Fanconi Syndrome (FAN1, Basenji V	/ariant)	Clear
\oslash	Fetal-Onset Neonatal Neuroaxonal I	Dystrophy (MFN2, Giant Schnauzer Variant)	Clear
\oslash) Glanzmann's Thrombasthenia Type	I (ITGA2B Exon 13, Great Pyrenees Variant)	Clear
\oslash) Glanzmann's Thrombasthenia Type I	I (ITGA2B Exon 12, Otterhound Variant)	Clear
\oslash) Globoid Cell Leukodystrophy, Krabbe	e disease (GALC Exon 5, Terrier Variant)	Clear
\oslash) Glycogen Storage Disease Type IA, v	/on Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
\oslash	Glycogen Storage Disease Type IIIA,	GSD IIIA (AGL, Curly Coated Retriever Variant)	Clear
\oslash	Glycogen storage disease Type VII, P and English Springer Spaniel Variant	Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whip :)	opet Clear
\oslash	Glycogen storage disease Type VII, P Wachtelhund Variant)	Phosphofructokinase Deficiency, PFK Deficiency (PFKM,	Clear
\oslash	GM1 Gangliosidosis (GLB1 Exon 2, Po	rtuguese Water Dog Variant)	Clear
\oslash	GM1 Gangliosidosis (GLB1 Exon 15, Sł	hiba Inu Variant)	Clear
\oslash	GM1 Gangliosidosis (GLB1 Exon 15, Ala	askan Husky Variant)	Clear
\oslash	GM2 Gangliosidosis (HEXA, Japanese	Chin Variant)	Clear
\oslash	GM2 Gangliosidosis (HEXB, Poodle Va	iriant)	Clear
\oslash	Golden Retriever Progressive Retinal	Atrophy 1, GR-PRA1 (SLC4A3)	Clear
\oslash	Golden Retriever Progressive Retinal A	Atrophy 2, GR-PRA2 (TTC8)	Clear
\bigcirc	Goniodysgenesis and Glaucoma, Pecti	inate Ligament Dysplasia, PLD (OLFM3)	Clear

DNA	Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
от	HER RESULTS		
\oslash	Hemophilia A (F8 Exon 11, German Shephe	rd Variant 1)	Clear
\oslash	Hemophilia A (F8 Exon 1, German Shepher	d Variant 2)	Clear
\oslash	Hemophilia A (F8 Exon 10, Boxer Variant)		Clear
\oslash	Hemophilia B (F9 Exon 7, Terrier Variant)		Clear
\oslash	Hemophilia B (F9 Exon 7, Rhodesian Ridge	back Variant)	Clear
\oslash	Hereditary Ataxia, Cerebellar Degeneration	n (RAB24, Old English Sheepdog and Gordon Setter Var	iant) Clear
\oslash	Hereditary Cataracts (HSF4 Exon 9, Austra	lian Shepherd Variant)	Clear
\oslash	Hereditary Footpad Hyperkeratosis (FAM8	3G, Terrier and Kromfohrlander Variant)	Clear
\oslash	Hereditary Footpad Hyperkeratosis (DSG1,	Rottweiler Variant)	Clear
\oslash	Hereditary Nasal Parakeratosis (SUV39H2	Intron 4, Greyhound Variant)	Clear
\oslash	Hereditary Nasal Parakeratosis, HNPK (SU)	/39H2)	Clear
\oslash	Hereditary Vitamin D-Resistant Rickets (V	DR)	Clear
\oslash	Hypocatalasia, Acatalasemia (CAT)		Clear
\oslash	Hypomyelination and Tremors (FNIP2, Wei	maraner Variant)	Clear
\oslash	Hypophosphatasia (ALPL Exon 9, Karelian	Bear Dog Variant)	Clear
\oslash	Ichthyosis (NIPAL4, American Bulldog Vari	ant)	Clear
\oslash	Ichthyosis (ASPRV1 Exon 2, German Shept	nerd Variant)	Clear
\oslash	Ichthyosis (SLC27A4, Great Dane Variant)		Clear

DNA Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
OTHER RESULTS		
⊘ Ichthyosis, Epidermolytic Hyp	erkeratosis (KRT10, Terrier Variant)	Clear
⊘ Ichthyosis, ICH1 (PNPLA1, Gold	den Retriever Variant)	Clear
Inflammatory Myopathy (SLC2	5A12)	Clear
Inherited Myopathy of Great D	anes (BIN1)	Clear
Inherited Selected Cobalamin	Malabsorption with Proteinuria (CUBN, Komondor Variant)	Clear
Intestinal Lipid Malabsorption	(ACSL5, Australian Kelpie)	Clear
Junctional Epidermolysis Bullo	sa (LAMA3 Exon 66, Australian Cattle Dog Variant)	Clear
Junctional Epidermolysis Bullos	sa (LAMB3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
🧭 Juvenile Laryngeal Paralysis an	d Polyneuropathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (D	IRAS1)	Clear
⊘ L-2-Hydroxyglutaricaciduria, L2	HGA (L2HGDH, Staffordshire Bull Terrier Variant)	Clear
Lagotto Storage Disease (ATG4)	D)	Clear
Laryngeal Paralysis (RAPGEF6, N	Miniature Bull Terrier Variant)	Olean
Late Onset Spinocerebellar Atax	kia (CAPN1)	Clear
Late-Onset Neuronal Ceroid Lipo	ofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
Leonberger Polyneuropathy 1 (Ll)	PN1, ARHGEF10)	Clear
🖉 Leonberger Polyneuropathy 2 (G	(eAL	Clear
		Uleal

DN	A Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
0	THER RESULTS		
0) Lethal Acrodermatitis, LAD (MKLN1)		Clear
\oslash) Leukodystrophy (TSEN54 Exon 5, Standard	Schnauzer Variant)	Clear
\oslash) Ligneous Membranitis, LM (PLG)		Clear
\oslash	Limb Girdle Muscular Dystrophy (SGCD, Bos	ston Terrier Variant)	Clear
\oslash	Limb-Girdle Muscular Dystrophy 2D (SGCA F	Exon 3, Miniature Dachshund Variant)	Clear
\oslash	Long QT Syndrome (KCNQ1)		Clear
\oslash	Lundehund Syndrome (LEPREL1)		Clear
\oslash	Macular Corneal Dystrophy, MCD (CHST6)		Clear
\oslash	Malignant Hyperthermia (RYR1)		Clear
\oslash	May-Hegglin Anomaly (MYH9)		Clear
\oslash	Methemoglobinemia (CYB5R3, Pit Bull Terrie	er Variant)	Clear
\oslash	Methemoglobinemia (CYB5R3)		Clear
\oslash	Microphthalmia (RBP4 Exon 2, Soft Coated W	Vheaten Terrier Variant)	Clear
\oslash	Mucopolysaccharidosis IIIB, Sanfilippo Syndr	rome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear
\oslash	Mucopolysaccharidosis Type IIIA, Sanfilippo : Variant)	Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund	Clear
\oslash	Mucopolysaccharidosis Type IIIA, Sanfilippo S Huntaway Variant)	Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealar	ıd Clear
\oslash	Mucopolysaccharidosis Type VI, Maroteaux-L Variant)	amy Syndrome, MPS VI (ARSB Exon 5, Miniature Pins.	cher Clear
\oslash	Mucopolysaccharidosis Type VII, Sly Syndrom	ne, MPS VII (GUSB Exon 3, German Shepherd Variant)	Clear

DNA	Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
от	HER RESULTS		
\oslash	Mucopolysaccharidosis Type VII, Sly Synd	rome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
\oslash	Multiple Drug Sensitivity (ABCB1)		Clear
\oslash	Muscular Dystrophy (DMD, Golden Retriev	er Variant)	Clear
\oslash	Musladin-Lueke Syndrome, MLS (ADAMTS	L2)	Clear
\oslash	Myasthenia Gravis-Like Syndrome (CHRNE	, Heideterrier Variant)	Clear
\oslash	Myotonia Congenita (CLCN1 Exon 23, Aust	ralian Cattle Dog Variant)	Clear
\oslash	Myotonia Congenita (CLCN1 Exon 7, Miniat	ure Schnauzer Variant)	Clear
\oslash	Narcolepsy (HCRTR2 Exon 1, Dachshund Va	ariant)	Clear
\oslash	Narcolepsy (HCRTR2 Intron 4, Doberman P	inscher Variant)	Clear
\oslash	Narcolepsy (HCRTR2 Intron 6, Labrador Re	triever Variant)	Clear
\oslash	Nemaline Myopathy (NEB, American Bulldo	g Variant)	Clear
\oslash	Neonatal Cerebellar Cortical Degeneration	(SPTBN2, Beagle Variant)	Clear
\oslash	Neonatal Encephalopathy with Seizures, N	EWS (ATF2)	Clear
\oslash	Neonatal Interstitial Lung Disease (LAMP3)		Clear
\oslash	Neuroaxonal Dystrophy, NAD (VPS11, Rottw	eiler Variant)	Clear
\oslash	Neuroaxonal Dystrophy, NAD (TECPR2, Spa	nish Water Dog Variant)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PF	PT1 Exon 8, Dachshund Variant 1)	Clear
\oslash	Neuronal Ceroid Lipofuscinosis 10, NCL 10	(CTSD Exon 5, American Bulldog Variant)	Clear

DNA	Test Report	Test Date: September 6th, 2023	embk.me/cavapoos31	16sreba
от	HER RESULTS			
\oslash	Neuronal Ceroid Lipofuscinosis 2, NCL	2 (TPP1 Exon 4, Dachshund Variant 2)		Clear
\oslash	Neuronal Ceroid Lipofuscinosis 5, NCL	5 (CLN5 Exon 4 SNP, Border Collie Variant)		Clear
\oslash	Neuronal Ceroid Lipofuscinosis 5, NCL	5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)		Clear
\oslash	Neuronal Ceroid Lipofuscinosis 6, NCL	6 (CLN6 Exon 7, Australian Shepherd Variant)		Clear
\oslash	Neuronal Ceroid Lipofuscinosis 7, NCL	7 (MFSD8, Chihuahua and Chinese Crested Variant)		Clear
\oslash	Neuronal Ceroid Lipofuscinosis 8, NCL	8 (CLN8, Australian Shepherd Variant)		Clear
\oslash	Neuronal Ceroid Lipofuscinosis 8, NCL	8 (CLN8 Exon 2, English Setter Variant)		Clear
\oslash	Neuronal Ceroid Lipofuscinosis 8, NCL	8 (CLN8 Insertion, Saluki Variant)		Clear
\oslash	Neuronal Ceroid Lipofuscinosis, Cereb Variant)	ellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire	> Terrier	Clear
\oslash	Oculocutaneous Albinism, OCA (SLC45	A2 Exon 6, Bullmastiff Variant)		Clear
\oslash	Oculocutaneous Albinism, OCA (SLC45	A2, Small Breed Variant)		Clear
\oslash	Oculoskeletal Dysplasia 2 (COL9A2, Sa	moyed Variant)		Clear
\oslash	Osteochondrodysplasia (SLC13A1, Poo	dle Variant)		Clear
\oslash	Osteogenesis Imperfecta (COL1A2, Bea	agle Variant)		Clear
\oslash	Osteogenesis Imperfecta (SERPINH1, D	Dachshund Variant)		Clear
\oslash	Osteogenesis Imperfecta (COL1A1, Gold	den Retriever Variant)		Clear
\oslash	P2Y12 Receptor Platelet Disorder (P2Y	12)		Clear
\oslash	Pachyonychia Congenita (KRT16, Dogu	e de Bordeaux Variant)		Clear

CAVAPOOS 3 :16 "S REBA

DNA	Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
ΟΤ	HER RESULTS		
\oslash	Paroxysmal Dyskinesia, PxD (PIGN)		Clear
\oslash	Persistent Mullerian Duct Syndrome, PMDS	G (AMHR2)	Clear
\oslash	Pituitary Dwarfism (POU1F1 Intron 4, Karelia	an Bear Dog Variant)	Clear
\oslash	Platelet Factor X Receptor Deficiency, Scot	t Syndrome (TMEM16F)	Clear
\oslash	Polycystic Kidney Disease, PKD (PKD1)		Clear
\oslash	Pompe's Disease (GAA, Finnish and Swedis	sh Lapphund, Lapponian Herder Variant)	Clear
\oslash	Prekallikrein Deficiency (KLKB1 Exon 8)		Clear
\oslash	Primary Ciliary Dyskinesia, PCD (NME5, Alas	skan Malamute Variant)	Clear
\oslash	Primary Ciliary Dyskinesia, PCD (CCDC39 E	xon 3, Old English Sheepdog Variant)	Clear
\oslash	Primary Hyperoxaluria (AGXT)		Clear
\oslash	Primary Lens Luxation (ADAMTS17)		Clear
\oslash	Primary Open Angle Glaucoma (ADAMTS17	Exon 11, Basset Fauve de Bretagne Variant)	Clear
\oslash	Primary Open Angle Glaucoma (ADAMTS10	Exon 17, Beagle Variant)	Clear
\oslash	Primary Open Angle Glaucoma (ADAMTS10	Exon 9, Norwegian Elkhound Variant)	Clear
\oslash	Primary Open Angle Glaucoma and Primary Variant)	Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei	Clear
\oslash	Progressive Retinal Atrophy (SAG)		Clear
\oslash	Progressive Retinal Atrophy (IFT122 Exon 2	26, Lapponian Herder Variant)	Clear
\oslash	Progressive Retinal Atrophy, Bardet-Biedl S	Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)) Clear

DNA Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
OTHER RESULTS		
Progressive Retinal Atrophy	y, CNGA (CNGA1 Exon 9)	Clear
Progressive Retinal Atrophy	y, crd1 (PDE6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy	v, crd4/cord1 (RPGRIP1)	Clear
Progressive Retinal Atrophy	, PRA1 (CNGB1)	Clear
Progressive Retinal Atrophy	, PRA3 (FAM161A)	Clear
Progressive Retinal Atrophy,	prcd (PRCD Exon 1)	Clear
Progressive Retinal Atrophy,	rcd1 (PDE6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy,	rcd3 (PDE6A)	Clear
Protein Losing Nephropathy,	PLN (NPHS1)	Clear
Pyruvate Dehydrogenase Deh	ficiency (PDP1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant)	Clear
Pyruvate Kinase Deficiency (I)	PKLR Exon 7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency (F	PKLR Exon 10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (F	YKLR Exon 7, Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (F	KLR Exon 7, Pug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmo	onary Disease, RIPD (AKNA, Rough Colling Verient)	Clear
Renal Cystadenocarcinoma ar	d Nodular Dermatofibrosis (ELON Sugar Collie Variant)	Clear
	(FLGN EXON /)	Clear

DNA Test Report		Test Date: September 6th, 2023	embk.me/cavapoos316sreba			
ОТ	OTHER RESULTS					
\oslash	Retina Dysplasia and/or Optic Nerve H	ypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear			
\oslash	Sensory Neuropathy (FAM134B, Borde	r Collie Variant)	Clear			
\oslash	Severe Combined Immunodeficiency,	SCID (PRKDC, Terrier Variant)	Clear			
\oslash	Severe Combined Immunodeficiency,	SCID (RAG1, Wetterhoun Variant)	Clear			
\oslash	Shaking Puppy Syndrome (PLP1, Englis	sh Springer Spaniel Variant)	Clear			
\oslash	Shar-Pei Autoinflammatory Disease, SF	PAID, Shar-Pei Fever (MTBP)	Clear			
\oslash	Skeletal Dysplasia 2, SD2 (COL11A2, La	brador Retriever Variant)	Clear			
\oslash	Skin Fragility Syndrome (PKP1, Chesap	eake Bay Retriever Variant)	Clear			
\oslash	Spinocerebellar Ataxia (SCN8A, Alpine	Dachsbracke Variant)	Clear			
\oslash	Spinocerebellar Ataxia with Myokymia	and/or Seizures (KCNJ10)	Clear			
\oslash	Spongy Degeneration with Cerebellar	Ataxia 1 (KCNJ10)	Clear			
\oslash	Spongy Degeneration with Cerebellar	Ataxia 2 (ATP1B2)	Clear			
\oslash	Stargardt Disease (ABCA4 Exon 28, Lab	prador Retriever Variant)	Clear			
\oslash	Succinic Semialdehyde Dehydrogenas	e Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear			
\oslash	Thrombopathia (RASGRP1 Exon 5, Ame	rican Eskimo Dog Variant)	Clear			
\oslash	Thrombopathia (RASGRP1 Exon 5, Bass	et Hound Variant)	Clear			
\oslash	Thrombopathia (RASGRP1 Exon 8, Land	seer Variant)	Clear			
\oslash	Trapped Neutrophil Syndrome, TNS (VP	'S13B)	Clear			

DNA	Test Report	Test Date: September 6th, 2023	embk.me/cavapoos316sreba
от	HER RESULTS		
\oslash	Ullrich-like Congenital Muscular	Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear
\oslash	Ullrich-like Congenital Muscular	Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
\oslash	Unilateral Deafness and Vestibu	lar Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
\oslash	Urate Kidney & Bladder Stones (SLC2A9)	Clear
\oslash	Von Willebrand Disease Type I, T	ype I vWD (VWF)	Clear
\oslash	Von Willebrand Disease Type II,	Type II vWD (VWF, Pointer Variant)	Clear
\oslash	Von Willebrand Disease Type III,	Type III vWD (VWF Exon 4, Terrier Variant)	Clear
\oslash	Von Willebrand Disease Type III,	Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Varian	nt) Clear
\oslash	Von Willebrand Disease Type III,	Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
\oslash	X-Linked Hereditary Nephropath	y, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
\oslash	X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant)	Clear
\oslash	X-Linked Progressive Retinal Atr	ophy 1, XL-PRA1 (RPGR)	Clear
\oslash	X-linked Severe Combined Immu	nodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
\oslash	X-linked Severe Combined Immu	nodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
\oslash	Xanthine Urolithiasis (XDH, Mixed	d Breed Variant)	Clear
\oslash	β -Mannosidosis (MANBA Exon 16	6, Mixed-Breed Variant)	Clear